Categorías
Productos calientes
QA: ¿Qué significa dsc?

2018-09-12

¿Qué significa dsc?


Calorimetría diferencial de barrido, o calorímetro diferencial de barrido。



La calorimetría diferencial de barrido, o DSC, es una técnica termoanalítica en la cual la diferencia en la cantidad de calor requerida para aumentar la temperatura de una muestra y la referencia se mide en función de la temperatura. Tanto la muestra como la referencia se mantienen a casi la misma temperatura durante todo el experimento. En general, el programa de temperatura para un análisis de DSC está diseñado de tal manera que la temperatura del soporte de la muestra aumenta linealmente en función del tiempo. La muestra de referencia debe tener una capacidad de calor bien definida en el rango de temperaturas a escanear.


La técnica fue desarrollada por E. S. Watson y M. J. O'Neill en 1962, [1] e introducida comercialmente en la Conferencia de Pittsburgh de 1963 sobre Química Analítica y Espectroscopía Aplicada. El primer calorímetro adiabático de barrido diferencial que podía usarse en bioquímica fue desarrollado por P. L. Privalov y D. R. Monaselidze en 1964 en el Instituto de Física de Tbilisi, Georgia. [2] El término DSC fue acuñado para describir este instrumento, que mide la energía directamente y permite mediciones precisas de la capacidad de calor. [3]



Detección de transiciones de fase.

El principio básico que subyace a esta técnica es que cuando la muestra experimenta una transformación física como las transiciones de fase, más o menos calor deberá fluir hacia ella que la referencia para mantener ambas a la misma temperatura. Si debe fluir menos o más calor a la muestra depende de si el proceso es exotérmico o endotérmico. Por ejemplo, a medida que una muestra sólida se derrite en un líquido, requerirá que fluya más calor hacia la muestra para aumentar su temperatura al mismo ritmo que la referencia. Esto se debe a la absorción de calor por parte de la muestra, ya que sufre la transición de la fase endotérmica de sólido a líquido. Asimismo, a medida que la muestra experimenta procesos exotérmicos (como la cristalización), se requiere menos calor para elevar la temperatura de la muestra. Al observar la diferencia en el flujo de calor entre la muestra y la referencia, los calorímetros de barrido diferencial pueden medir la cantidad de calor absorbido o liberado durante dichas transiciones. DSC también se puede usar para observar cambios físicos más sutiles, como las transiciones de vidrio. Es ampliamente utilizado en entornos industriales como un instrumento de control de calidad debido a su aplicabilidad para evaluar la pureza de la muestra y para estudiar el curado de polímeros. [4] [5] [6]


DTA

Una técnica alternativa, que comparte mucho en común con DSC, es el análisis térmico diferencial (DTA). En esta técnica, es el flujo de calor a la muestra y la referencia lo que permanece igual en lugar de la temperatura. Cuando la muestra y la referencia se calientan de manera idéntica, los cambios de fase y otros procesos térmicos causan una diferencia de temperatura entre la muestra y la referencia. Tanto DSC como DTA proporcionan información similar. DSC mide la energía requerida para mantener tanto la referencia como la muestra a la misma temperatura, mientras que DTA mide la diferencia de temperatura entre la muestra y la referencia cuando se ha introducido la misma cantidad de energía en ambas.


Curvas DSC


Arriba: una curva DSC esquemática de la cantidad de energía (y) requerida para mantener cada temperatura (x), escaneada en un rango de temperaturas. Parte inferior: curvas normalizadas que establecen la capacidad de calor inicial como referencia. Línea de base de tampón-tampón (discontinua) y varianza de proteína-tampón (sólido).


Curvas DSC normalizadas que utilizan la línea base como referencia (izquierda) y las fracciones de cada estado conformacional (y) que existen a cada temperatura (derecha), para proteínas de dos estados (arriba) y de tres estados (abajo). Tenga en cuenta la ampliación minúscula en el pico de la curva DSC de la proteína de tres estados, que puede o no parecer estadísticamente significativa a simple vista.

El resultado de un experimento de DSC es una curva de flujo de calor en función de la temperatura o el tiempo. Hay dos convenciones diferentes: las reacciones exotérmicas en la muestra se muestran con un pico positivo o negativo, dependiendo del tipo de tecnología utilizada en el experimento. Esta curva se puede utilizar para calcular entalpías de transiciones. Esto se hace integrando el pico correspondiente a una transición dada. Se puede mostrar que la entalpía de transición se puede expresar mediante la siguiente ecuación:




donde Delta H es la entalpía de transición, K es la constante calorimétrica y A es el área bajo la curva. La constante calorimétrica variará de un instrumento a otro, y puede determinarse analizando una muestra bien caracterizada con entalpías de transición conocidas. [5]


Aplicaciones

La calorimetría diferencial de barrido se puede utilizar para medir varias propiedades características de una muestra. Usando esta técnica es posible observar eventos de fusión y cristalización, así como las temperaturas de transición vítrea Tg. La DSC también se puede usar para estudiar la oxidación, así como otras reacciones químicas. [4] [5] [7]


Pueden ocurrir transiciones de vidrio a medida que aumenta la temperatura de un sólido amorfo. Estas transiciones aparecen como un paso en la línea de base de la señal DSC grabada. Esto se debe a que la muestra está experimentando un cambio en la capacidad de calor; no se produce cambio de fase formal. [4] [6]


A medida que aumenta la temperatura, un sólido amorfo se volverá menos viscoso. En algún momento, las moléculas pueden obtener suficiente libertad de movimiento para organizarse espontáneamente en una forma cristalina. Esto se conoce como la temperatura de cristalización (Tc). Esta transición de sólido amorfo a sólido cristalino es un proceso exotérmico y da como resultado un pico en la señal DSC. A medida que aumenta la temperatura, la muestra finalmente alcanza su temperatura de fusión (Tm). El proceso de fusión da como resultado un pico endotérmico en la curva DSC. La capacidad de determinar las temperaturas de transición y las entalpías hace de DSC una herramienta valiosa para producir diagramas de fase para varios sistemas químicos. [4]


Ejemplos

La técnica se utiliza ampliamente en una amplia gama de aplicaciones, como prueba de calidad de rutina y como herramienta de investigación. El equipo es fácil de calibrar, por ejemplo, utilizando indio de bajo punto de fusión a 156.5985 ° C, y es un método rápido y confiable de análisis térmico.


Polímeros

DSC se usa ampliamente para examinar materiales poliméricos para determinar sus transiciones térmicas. Las transiciones térmicas observadas pueden utilizarse para comparar materiales, aunque las transiciones no identifican de forma única la composición. La composición de materiales desconocidos se puede completar utilizando técnicas complementarias, como la espectroscopia IR. Los puntos de fusión y las temperaturas de transición vítrea para la mayoría de los polímeros están disponibles a partir de compilaciones estándar, y el método puede mostrar la degradación del polímero al disminuir el punto de fusión esperado, Tm, por ejemplo. La Tm depende del peso molecular del polímero y del historial térmico, por lo que los grados más bajos pueden tener puntos de fusión más bajos de lo esperado. El porcentaje de contenido cristalino de un polímero se puede estimar a partir de los picos de cristalización / fusión del gráfico DSC, ya que los calores de referencia de fusión se pueden encontrar en la literatura. [8] La DSC también se puede utilizar para estudiar la degradación térmica de los polímeros utilizando un enfoque como la Temperatura / Tiempo de Inicio Oxidativo (OOT), sin embargo, el usuario corre el riesgo de contaminación de la celda DSC, lo que puede ser problemático. El análisis termogravimétrico (TGA) puede ser más útil para la determinación del comportamiento de descomposición. Las impurezas en los polímeros se pueden determinar mediante el examen de los termogramas en busca de picos anómalos, y los plastificantes se pueden detectar en sus puntos de ebullición característicos. Además, el examen de eventos menores en el primer análisis térmico de datos puede ser útil, ya que estos "picos aparentemente anómalos" también pueden ser representativos del historial térmico del proceso o de almacenamiento del material o del envejecimiento físico del polímero. La comparación de los datos de calor primero y segundo recopilados a velocidades de calentamiento constantes puede permitir al analista conocer el historial de procesamiento del polímero y las propiedades del material.


Cristales liquidos

DSC se utiliza en el estudio de cristales líquidos. Como algunas formas de materia van de sólido a líquido, pasan por un tercer estado, que muestra las propiedades de ambas fases. Este líquido anisotrópico se conoce como un estado líquido cristalino o mesomorfo. Usando DSC, es posible observar los pequeños cambios de energía que ocurren cuando la materia pasa de un sólido a un cristal líquido y de un cristal líquido a un líquido isotrópico. [5]


Estabilidad oxidativa

El uso de la calorimetría de barrido diferencial para estudiar la estabilidad a la oxidación de las muestras generalmente requiere una cámara de muestra hermética. Por lo general, tales pruebas se realizan isotérmicamente (a temperatura constante) cambiando la atmósfera de la muestra. Primero, la muestra se lleva a la temperatura de prueba deseada bajo una atmósfera inerte, generalmente nitrógeno. Luego, se agrega oxígeno al sistema. Cualquier oxidación que se produce se observa como una desviación en la línea de base. Dicho análisis se puede usar para determinar la estabilidad y las condiciones de almacenamiento óptimas para un material o compuesto. [4]


Detección de seguridad

DSC hace una herramienta de detección de seguridad inicial razonable. En este modo, la muestra se alojará en un crisol no reactivo (a menudo oro o acero chapado en oro), y podrá resistir la presión (generalmente hasta 100 bar). La presencia de un evento exotérmico se puede utilizar para evaluar la estabilidad de una sustancia al calor. Sin embargo, debido a una combinación de sensibilidad relativamente pobre, velocidades de escaneo más lentas de lo normal (típicamente 2–3 ° C / min, debido a un crisol mucho más pesado) y energía de activación desconocida, es necesario deducir de 75 a 100 ° C de la Inicio inicial de la exotermia observada para sugerir una temperatura máxima para el material. Se puede obtener un conjunto de datos mucho más preciso a partir de un calorímetro adiabático, pero una prueba de este tipo puede tomar de 2 a 3 días desde el ambiente a un ritmo de 3 ° C de incremento por media hora.


Análisis de drogas

DSC es ampliamente utilizado en la industria farmacéutica y de polímeros. Para el químico de polímeros, DSC es una herramienta útil para estudiar los procesos de curado, que permite el ajuste fino de las propiedades del polímero. La reticulación de las moléculas de polímero que ocurre en el proceso de curado es exotérmica, lo que resulta en un pico negativo en la curva DSC que generalmente aparece poco después de la transición vítrea. [4] [5] [6]


En la industria farmacéutica es necesario contar con compuestos farmacológicos bien caracterizados para definir los parámetros de procesamiento. Por ejemplo, si es necesario administrar un medicamento en forma amorfa, es deseable procesar el medicamento a temperaturas inferiores a las que pueden ocurrir la cristalización. [5]


Análisis químico general

La depresión del punto de congelación se puede utilizar como una herramienta de análisis de pureza cuando se analiza mediante calorimetría diferencial de barrido. Esto es posible porque el rango de temperatura en el que se funde una mezcla de compuestos depende de sus cantidades relativas. En consecuencia, los compuestos menos puros exhibirán un pico de fusión ampliado que comienza a una temperatura más baja que un compuesto puro. [5] [6]






De Wikipedia, la enciclopedia libre


solicitar un presupuesto gratuito

si tiene preguntas o sugerencias, por favor déjenos un mensaje,

  • CS PINTEREST
  • CS LINKEDIN
  • CS YOUTUBE
  • CS Facebook

Derechos de autor © 2000-2024 CS Ceramic Co.,Ltd.Todos los derechos reservados.

   

el equipo profesional al servicio !

Chatea ahora

chat en vivo

    deja un mensaje y te contactaremos por correo electrónico. las horas normales de chat en vivo son mon-fri 9a-5p (est)